FACULTY OF SCIENCE

B.SC. (CBCS) II-Year (III-Semester) Regular Examinations, Dec-2022/Jan-2023

Mathematics-III
(Real Analysis)
Time: 3 Hours
Max Marks: 80
SECTION-A
($4 \times 5=20$ Marks)
Answer any Four questions from the following ఈక్రింది వానిలో ఏవేని నాలుగు ప్రశ్నలకు సమాధానాలు రాయండి

1. Show that convergent sequences are bounded.

అభిసరించే అనుక్రమాలు పరిబద్దము అనిచూపండి.
2. If $f(x)=2 x^{2}+1 \forall x \in R$ then show that f is continuous on R by using the $\varepsilon-\delta$ properties. $f(x)=2 x^{2}+1 \quad \forall x \in R$ అయితే $\varepsilon-\delta$ ధర్మమును ఉపయోగించి f అనునది R పై అవిచ్ఛిన్నం అనిచూపండి.
3. Find the Taylor's series of $\sin x$ at zero.

టేలర్ (శ్రేణిని $\sin x$ నకు సున్న వద్ద కనుక్కోండి.
4. Let $f(x)=1$ for rational x and $f(x)=0$ for irrational x. Then show that f is not integrable on $[a, b]$ where $a<b$.
అకరణీయ సంఖ్య x కు $f(x)=1$ మరియు కరణీయ సంఖ్య x కు $f(x)=0$ అయితే f అనేది $[a, b]$ పై సమాకలనీయం కాదని చూపండి. ఇక్కడ $a<b$.
5. Define limit of a sequence and show that $\operatorname{Lim} \frac{n^{3}+6 n^{2}+7}{4 n^{3}+3 n-4}=\frac{1}{4}$.

అనుక్రమము యొక్క అవధిని నిర్వచించండి మరియు $\operatorname{Lim} \frac{n^{3}+6 n^{2}+7}{4 n^{3}+3 n-4}=\frac{1}{4}$ అనిచూపండి.
6. Show that $\left|\int_{-2 \pi}^{2 \pi} x^{2} \sin ^{8}\left(e^{x}\right) d x\right| \leq \frac{16 \pi^{3}}{3}$.
$\left|\int_{-2 \pi}^{2 \pi} x^{2} \sin ^{8}\left(e^{x}\right) d x\right| \leq \frac{16 \pi^{3}}{3}$ అని చూపండి.
SECTION-B
(4×15 = 60 Marks)
Answer all the following questions ఈక్రింది అన్ని ప్రశ్నలకు సమాధానాలు (్రాయుము
7. (a) i) Show that every convergent sequence is Cauchy sequence.
ii) Show that Every bounded sequence has a convergent subsequence.
i) ప్రతి అభిసరించే అనుక్రమము కోషి అనుక్రమం అనిచూపండి.
ii) ప్రతి పరిబద్ద అనుక్రమానికి అభిసరించే ఉపాను క్రమం ఉంటుందని చూపండి.
(OR) / లేదా
(b) State and prove the Root Test for series.
(శరశణులపై మూల పరీక్షను ప్రవచించి, నిరూపించండి.
8. (a) i) If f be a continuous real valued function on a closed interval $[a, b]$ then. show that f is bounded on $[a, b]$.
ii) If f and g are continuous at x_{0} in R then Prove that Max. (f, g) is continuous at x_{0}
i) సంవృత అంతరము $[a, b]$ పై f అనునది అవిచ్ఛిన వాస్తవ మూల్య ప్రమేయం అయితే f అనేది $[a, b]$ పై పరిబద్దం అనిచూపండి.
ii) f మరియు g లు x_{0} వద్ద అవిచ్చిన్నం అయితే $\operatorname{Max} .(f, g)$ అనునది x_{0} వద్ద అవిచ్చిన్నం అనిచూపండి (OR) / లేదా
(b) Define uniformly continuous. if f is continuous on closed interval $[a, b]$ then show that f is uniformly continuous on $[a, b]$.
ఏకరూప అవిచ్ఛిన్నతను నిర్వచించండి. f అనునది సంవృతాంతరము $[a, b]$ పై అవిచ్ఛిన్నం అయితే $[a, b]$ పై ఏకరూప అవిచ్ఛిన్నం అనిచూపండి.
9. (a) State and Prove Lagrange's mean Value theorem.

లెగ్రాంజ్ మధ్యమ మూల్య సిద్ధాంతాన్ని ప్రవచించి, నిరూపించండి.
(OR) / లేదా
(b) Find i) $x \xrightarrow{\operatorname{Lim}} 0 \frac{x^{3}}{\sin x-x}$
ii) $\quad x \xrightarrow{\operatorname{Lim}} 0\left(\frac{1}{\sin x}-\frac{1}{x}\right)$
iii) $y \xrightarrow{\operatorname{Lim}}\left(1+\frac{2}{y}\right)^{y}$.
i) $\quad \operatorname{Lim}_{x \rightarrow}^{\operatorname{Lim}} 0 \frac{x^{3}}{\sin x-x} \quad$ ii) $\quad x \rightarrow 0\left(\frac{1}{\sin x}-\frac{1}{x}\right)$
iii) $y \xrightarrow{\operatorname{Lim}} \infty\left(1+\frac{2}{y}\right)^{y}$ లను గణించండి.
10. (a) Show that every continuous function f on $[a, b]$ is integrable. $[a, b]$ పై ప్రతి అవిచ్ఛిన్న ప్రమేయం f సమాకలనీయము అనిచూపండి.
(OR) / లేదా
(b) State and Prove fundamental theorem of calculus కలన గణిత మూల సిద్ధాంతము-1 ని ప్రవచించి, నిరూపించండి.

